The region between the lines
x
=
a
\displaystyle {x}={a}
x
=
a
and
x
=
b
\displaystyle {x}={b}
x
=
b
, and the graphs of
y
=
f
(
x
)
\displaystyle {y}={f{{\left({x}\right)}}}
y
=
f
(
x
)
and
y
=
g
(
x
)
\displaystyle {y}={g{{\left({x}\right)}}}
y
=
g
(
x
)
is rotated around the
x
-axis to form a solid, as shown in the figure.
Which of the following integrals represents the volume of this solid?
∫
a
b
2
π
x
[
f
(
x
)
−
g
(
x
)
]
d
x
\displaystyle {\int_{{a}}^{{b}}}{2}\pi{x}{\left[{f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right]}\ {\left.{d}{x}\right.}
∫
a
b
2
π
x
[
f
(
x
)
−
g
(
x
)
]
d
x
∫
a
b
π
(
f
(
x
)
−
g
(
x
)
)
2
d
x
\displaystyle {\int_{{a}}^{{b}}}\pi{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}^{{2}}\ {\left.{d}{x}\right.}
∫
a
b
π
(
f
(
x
)
−
g
(
x
)
)
2
d
x
∫
a
b
π
[
(
f
(
x
)
)
2
−
(
g
(
x
)
)
2
]
d
x
\displaystyle {\int_{{a}}^{{b}}}\pi{\left[{\left({f{{\left({x}\right)}}}\right)}^{{2}}-{\left({g{{\left({x}\right)}}}\right)}^{{2}}\right]}\ {\left.{d}{x}\right.}
∫
a
b
π
[
(
f
(
x
)
)
2
−
(
g
(
x
)
)
2
]
d
x
∫
a
b
[
(
f
(
x
)
)
2
−
(
g
(
x
)
)
2
]
d
x
\displaystyle {\int_{{a}}^{{b}}}{\left[{\left({f{{\left({x}\right)}}}\right)}^{{2}}-{\left({g{{\left({x}\right)}}}\right)}^{{2}}\right]}\ {\left.{d}{x}\right.}
∫
a
b
[
(
f
(
x
)
)
2
−
(
g
(
x
)
)
2
]
d
x
Submit
Try a similar question
License
[more..]