The partial fraction decomposition of
x
2
+
23
(
x
−
3
)
(
x
2
+
4
)
\displaystyle {\frac{{{x}^{{2}}+{23}}}{{{\left({x}-{3}\right)}{\left({x}^{{2}}+{4}\right)}}}}
(
x
−
3
)
(
x
2
+
4
)
x
2
+
23
can be written in the form of
f
(
x
)
x
−
3
+
g
(
x
)
x
2
+
4
.
\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{x}-{3}}}}+{\frac{{{g{{\left({x}\right)}}}}}{{{x}^{{2}}+{4}}}}.
x
−
3
f
(
x
)
+
x
2
+
4
g
(
x
)
.
What type of function will the numerators
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
and
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
be?
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
is
Select an answer
a constant: C
a linear function: Ax + B
and
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is
Select an answer
a constant: C
a linear function: Ax + B
Question Help:
Video
Submit
Try a similar question
License
[more..]