Does the series
∑
k
=
1
∞
k
4
k
15
+
5
\displaystyle {\sum_{{{k}={1}}}^{{\infty}}}\ \frac{{k}^{{4}}}{\sqrt{{{k}^{{15}}+{5}}}}
k
=
1
∑
∞
k
15
+
5
k
4
converge or diverge?
converges
diverges
Does the series
∑
k
=
1
∞
(
−
1
)
k
k
4
k
15
+
5
\displaystyle {\sum_{{{k}={1}}}^{{\infty}}}\ \frac{{{\left(-{1}\right)}^{{k}}{k}^{{4}}}}{\sqrt{{{k}^{{15}}+{5}}}}
k
=
1
∑
∞
k
15
+
5
(
−
1
)
k
k
4
converge or diverge?
diverges
converges
Question Help:
Video
Submit
Try a similar question
License
[more..]