Does the series k=1 cos(1k)k2+39\displaystyle {\sum_{{{k}={1}}}^{{\infty}}}\ \frac{{\cos{{\left(\frac{{1}}{{k}}\right)}}}}{{\sqrt[{{9}}]{{{k}^{{2}}+{3}}}}} converge absolutely, converge conditionally or diverge?


Does the series k=1 cos(kπ)k2+39\displaystyle {\sum_{{{k}={1}}}^{{\infty}}}\ \frac{{\cos{{\left({k}\pi\right)}}}}{{\sqrt[{{9}}]{{{k}^{{2}}+{3}}}}} converge absolutely, converge conditionally or diverge?