Given the function f(x)=4x2\displaystyle {f{{\left({x}\right)}}}=-{4}{x}^{{2}}

Find the difference quotient f(x+h)f(x)h\displaystyle {\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{{h}}}}  

Find f(x)\displaystyle {f}'{\left({x}\right)} by determining limh0f(x+h)f(x)h\displaystyle \lim_{{{h}\rightarrow{0}}}{\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{{h}}}}.  

Find f(2)\displaystyle {f}'{\left(-{2}\right)}  

Find f(0)\displaystyle {f}'{\left({0}\right)}  

Find f(1)\displaystyle {f}'{\left({1}\right)}  

Graph the function f(x)=4x2\displaystyle {f{{\left({x}\right)}}}=-{4}{x}^{{2}} and draw the tangent lines to the graph at points whose x-coordinates are -2 , 0, and 1. (The slopes of these lines should match the derivative values you calculated above.)
123-1-2-3-412345678910-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17
Clear All Draw: LineParabola