Exponents Mini-Lesson Review
The tables below illustrate the effect of negative exponents. Fill in the blanks.
Exponents3\displaystyle -{3}2\displaystyle -{2}1\displaystyle -{1}0\displaystyle {0}1\displaystyle {1}2\displaystyle {2}3\displaystyle {3}
Expression23\displaystyle {2}^{{-{{3}}}}22\displaystyle {2}^{{-{{2}}}}21\displaystyle {2}^{{-{{1}}}}20\displaystyle {2}^{{0}}21\displaystyle {2}^{{1}}22\displaystyle {2}^{{2}}23\displaystyle {2}^{{3}}
Expression without negative exponents123\displaystyle \frac{{1}}{{2}^{{3}}}122\displaystyle \frac{{1}}{{2}^{{2}}}121\displaystyle \frac{{1}}{{2}^{{1}}}20\displaystyle {2}^{{0}}21\displaystyle {2}^{{1}}22\displaystyle {2}^{{2}}23\displaystyle {2}^{{3}}
Simplified expression18\displaystyle \frac{{1}}{{8}}14\displaystyle \frac{{1}}{{4}}12\displaystyle \frac{{1}}{{2}}1\displaystyle {1}2\displaystyle {2}4\displaystyle {4}8\displaystyle {8}
Exponents3\displaystyle -{3}2\displaystyle -{2}1\displaystyle -{1}0\displaystyle {0}1\displaystyle {1}2\displaystyle {2}3\displaystyle {3}
Expression33\displaystyle {3}^{{-{{3}}}}32\displaystyle {3}^{{-{{2}}}}31\displaystyle {3}^{{-{{1}}}}30\displaystyle {3}^{{0}}31\displaystyle {3}^{{1}}32\displaystyle {3}^{{2}}33\displaystyle {3}^{{3}}
Expression without negative exponents       30\displaystyle {3}^{{0}}31\displaystyle {3}^{{1}}32\displaystyle {3}^{{2}}33\displaystyle {3}^{{3}}
Simplified expression              
Exponents3\displaystyle -{3}2\displaystyle -{2}1\displaystyle -{1}0\displaystyle {0}1\displaystyle {1}2\displaystyle {2}3\displaystyle {3}
Expression103\displaystyle {10}^{{-{{3}}}}102\displaystyle {10}^{{-{{2}}}}101\displaystyle {10}^{{-{{1}}}}100\displaystyle {10}^{{0}}101\displaystyle {10}^{{1}}102\displaystyle {10}^{{2}}103\displaystyle {10}^{{3}}
Expression without negative exponents       100\displaystyle {10}^{{0}}101\displaystyle {10}^{{1}}102\displaystyle {10}^{{2}}103\displaystyle {10}^{{3}}
Simplified expression