Consider the normal lines to the curve y2=x\displaystyle {y}^{{2}}={x} at the points (a,a)\displaystyle {\left({a},\sqrt{{{a}}}\right)} and (a,a)\displaystyle {\left({a},-\sqrt{{{a}}}\right)}. These two normal lines intersect each other on the x axis. Determine the greatest lower bound of the x coordinate of this point of intersection for all x>0.\displaystyle {x}>{0}. The applet below will help you visualize the situation (move the slider to see the effect of changing the x\displaystyle {x} value on the location of the x\displaystyle {x} intercept of the normal lines).

Loading Geogebra...

 

It will suffice to consider the normal line at (a,a)\displaystyle {\left({a},\sqrt{{{a}}}\right)}.

(A) What is the slope of the tangent line to the graph of y2=x\displaystyle {y}^{{2}}={x} at the point (a,a)\displaystyle {\left({a},\sqrt{{{a}}}\right)}?

         

(B) What is the slope of the normal line to the graph of y2=x\displaystyle {y}^{{2}}={x} at the point (a,a)\displaystyle {\left({a},\sqrt{{{a}}}\right)}?    

         

(C) What is the equation of the normal line to the graph of y2=x\displaystyle {y}^{{2}}={x} at the point (a,a)\displaystyle {\left({a},\sqrt{{{a}}}\right)}?    

       y=\displaystyle {y}=   

(D) What is the x\displaystyle {x} intercept of the normal line, in terms of a? Simplify your answer.

         

(E) What is the greatest lower bound for the x intercepts of all possible normal lines for a>0\displaystyle {a}>{0}?