(a) The graph of f(x)=(x+20)2\displaystyle {f{{\left({x}\right)}}}={\left({x}+{20}\right)}^{{2}} can be obtained from shifting the graph of f(x)=x2\displaystyle {f{{\left({x}\right)}}}={x}^{{2}} to the 20 units.
(b) The graph of f(x)=x2+20\displaystyle {f{{\left({x}\right)}}}={x}^{{2}}+{20} can be obtained from shifting the graph of f(x)=x2\displaystyle {f{{\left({x}\right)}}}={x}^{{2}} 20 units.
(c) The graph of f(x)=20x\displaystyle {f{{\left({x}\right)}}}={20}\sqrt{{{x}}} can be obtained from the graph of f(x)=x\displaystyle {f{{\left({x}\right)}}}=\sqrt{{{x}}} vertically by a factor 20.
(d) The graph of f(x)=20x\displaystyle {f{{\left({x}\right)}}}=\sqrt{{{20}{x}}} can be obtained from the graph of f(x)=x\displaystyle {f{{\left({x}\right)}}}=\sqrt{{{x}}} horizontally by a factor 120\displaystyle {\frac{{{1}}}{{{20}}}}.

For each question, enter one of: left, right, upward, downward, stretching, shrinking