Suppose that f(x)=x213x+42x23x18\displaystyle {f{{\left({x}\right)}}}=\frac{{{x}^{{2}}-{13}{x}+{42}}}{{{x}^{{2}}-{3}{x}-{18}}}. Compute each the following limit. Use exact values.

  1. limxf(x)\displaystyle \lim_{{{x}\to-\infty}}{f{{\left({x}\right)}}} =  


  2. limx6f(x)\displaystyle \lim_{{{x}\to{6}^{{-}}}}{f{{\left({x}\right)}}} =  
  3. limx6+f(x)\displaystyle \lim_{{{x}\to{6}^{+}}}{f{{\left({x}\right)}}} =  
  4. limx6f(x)\displaystyle \lim_{{{x}\to{6}}}{f{{\left({x}\right)}}} =  


  5. limx7f(x)\displaystyle \lim_{{{x}\to{7}^{{-}}}}{f{{\left({x}\right)}}} =  
  6. limx7+f(x)\displaystyle \lim_{{{x}\to{7}^{+}}}{f{{\left({x}\right)}}} =  
  7. limx7f(x)\displaystyle \lim_{{{x}\to{7}}}{f{{\left({x}\right)}}} =  


  8. limx5f(x)\displaystyle \lim_{{{x}\to-{5}^{{-}}}}{f{{\left({x}\right)}}} =  
  9. limx5+f(x)\displaystyle \lim_{{{x}\to-{5}^{+}}}{f{{\left({x}\right)}}} =  
  10. limx5f(x)\displaystyle \lim_{{{x}\to-{5}}}{f{{\left({x}\right)}}} =  


  11. limx3f(x)\displaystyle \lim_{{{x}\to-{3}^{{-}}}}{f{{\left({x}\right)}}} =  
  12. limx3+f(x)\displaystyle \lim_{{{x}\to-{3}^{+}}}{f{{\left({x}\right)}}} =  
  13. limx3f(x)\displaystyle \lim_{{{x}\to-{3}}}{f{{\left({x}\right)}}} =  


  14. limxf(x)\displaystyle \lim_{{{x}\to\infty}}{f{{\left({x}\right)}}} =