Function Evaluation, Rule of 4
On the right are four functions, each using one of the function representations we've learned about in this lesson.
Use functions, f(x), g(x), h(x) and p(t)\displaystyle {f{{\left({x}\right)}}},\ {g{{\left({x}\right)}}},\ {h}{\left({x}\right)}\ \text{and}\ {p}{\left({t}\right)} to answer the questions on the left.
Evaluate f(3)\displaystyle {f{{\left({3}\right)}}}
f(3)=\displaystyle {f{{\left({3}\right)}}}=

Determine x\displaystyle {x} when f(x)=3\displaystyle {f{{\left({x}\right)}}}=-{3}
x=\displaystyle {x}=

Evaluate g(10)\displaystyle {g{{\left({10}\right)}}}
g(10)=\displaystyle {g{{\left({10}\right)}}}=

Determine x\displaystyle {x} when g(x)=14\displaystyle {g{{\left({x}\right)}}}={14}
x=\displaystyle {x}=

Evaluate h(14)\displaystyle {h}{\left(-{14}\right)}
h(14)=\displaystyle {h}{\left(-{14}\right)}=

Determine x\displaystyle {x} when h(x)=16\displaystyle {h}{\left({x}\right)}={16}
x=\displaystyle {x}=

Evaluate p(80)\displaystyle {p}{\left({80}\right)}
p(80)=\displaystyle {p}{\left({80}\right)}=

Determine t\displaystyle {t} when p(t)=94\displaystyle {p}{\left({t}\right)}={94}
t=\displaystyle {t}=
f(x)\displaystyle {f{{\left({x}\right)}}}

12345-1-2-3-4-512345-1-2-3-4-5xy

g(x)\displaystyle {g{{\left({x}\right)}}}: {(-5,-8), (10,51), (14,70), (18,32), (33,-1), (36,-6),
(39,14), (53,50), (80,57), (82,10)}

t\displaystyle {t}-5101418333639538082
p(t)\displaystyle {p}{\left({t}\right)}768266778016943059108

h(x)=1x+27\displaystyle {h}{\left({x}\right)}={1}{x}+{27}