Function Composition
Given the function
f
(
x
)
=
4
x
−
3
\displaystyle {f{{\left({x}\right)}}}={4}{x}-{3}
f
(
x
)
=
4
x
−
3
and the function
g
(
x
)
=
5
x
2
+
3
x
+
8
\displaystyle {g{{\left({x}\right)}}}={5}{x}^{{2}}+{3}{x}+{8}
g
(
x
)
=
5
x
2
+
3
x
+
8
determine each of the following.
Give your answer as an integer or a simplified fraction.
Evaluate
f
(
g
(
0
)
)
\displaystyle {f{{\left({g{{\left({0}\right)}}}\right)}}}
f
(
g
(
0
)
)
f
(
g
(
0
)
)
=
\displaystyle {f{{\left({g{{\left({0}\right)}}}\right)}}}=
f
(
g
(
0
)
)
=
Preview
Question 6 Part 1 of 4
Evaluate
g
(
f
(
0
)
)
\displaystyle {g{{\left({f{{\left({0}\right)}}}\right)}}}
g
(
f
(
0
)
)
g
(
f
(
0
)
)
=
\displaystyle {g{{\left({f{{\left({0}\right)}}}\right)}}}=
g
(
f
(
0
)
)
=
Preview
Question 6 Part 2 of 4
Evaluate
f
(
g
(
6
)
)
\displaystyle {f{{\left({g{{\left({6}\right)}}}\right)}}}
f
(
g
(
6
)
)
f
(
g
(
6
)
)
=
\displaystyle {f{{\left({g{{\left({6}\right)}}}\right)}}}=
f
(
g
(
6
)
)
=
Preview
Question 6 Part 3 of 4
Evaluate
f
(
f
(
2
)
)
\displaystyle {f{{\left({f{{\left({2}\right)}}}\right)}}}
f
(
f
(
2
)
)
f
(
f
(
2
)
)
=
\displaystyle {f{{\left({f{{\left({2}\right)}}}\right)}}}=
f
(
f
(
2
)
)
=
Preview
Question 6 Part 4 of 4
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle