Function Composition Using Rule of 4
Use the functions for f(x)\displaystyle {f{{\left({x}\right)}}}, g(x)\displaystyle {g{{\left({x}\right)}}}, h(x)\displaystyle {h}{\left({x}\right)} and p(t)\displaystyle {p}{\left({t}\right)} to evaluate the expressions below. Write your answer as an integer or a reduced fraction.
f(1+g(1))=\displaystyle {f{{\left(-{1}+{g{{\left(-{1}\right)}}}\right)}}}=

g(h(2)3)=\displaystyle {g{{\left({h}{\left(-{2}\right)}-{3}\right)}}}=

p(f(2)+h(2))=\displaystyle {p}{\left({f{{\left({2}\right)}}}+{h}{\left({2}\right)}\right)}=

f(g(h(4))=\displaystyle {f{{\left({g{{\left({h}{\left(-{4}\right)}\right)}}}=\right.}}}
h(x)=x+1\displaystyle {h}{\left({x}\right)}=-{x}+{1}

g(x)\displaystyle {g{{\left({x}\right)}}}: {(-4,-4), (-3,-1), (-2,4), (-1,1), (0,2), (1,3), (2,5), (3,-2), (4,-3), (5,0)}

t\displaystyle {t}-4-3-2-1012345
p(t)\displaystyle {p}{\left({t}\right)}3-22-3054-1-41