Let
f
(
g
(
x
)
)
=
9
−
8
+
5
x
2
\displaystyle {f{{\left({g{{\left({x}\right)}}}\right)}}}=\frac{{{9}}}{{-{8}+{5}{x}^{{2}}}}
f
(
g
(
x
)
)
=
−
8
+
5
x
2
9
. Which of the following are possible formulas for
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
and
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
?
f
(
x
)
=
1
x
\displaystyle {f{{\left({x}\right)}}}=\frac{{1}}{{x}}
f
(
x
)
=
x
1
and
g
(
x
)
=
9
−
8
+
5
x
\displaystyle {g{{\left({x}\right)}}}=\frac{{{9}}}{{-{8}+{5}{x}}}
g
(
x
)
=
−
8
+
5
x
9
f
(
x
)
=
9
x
\displaystyle {f{{\left({x}\right)}}}=\frac{{{9}}}{{x}}
f
(
x
)
=
x
9
and
g
(
x
)
=
−
8
+
5
x
\displaystyle {g{{\left({x}\right)}}}=-{8}+{5}{x}
g
(
x
)
=
−
8
+
5
x
f
(
x
)
=
9
\displaystyle {f{{\left({x}\right)}}}={9}
f
(
x
)
=
9
and
g
(
x
)
=
1
−
8
+
5
x
2
\displaystyle {g{{\left({x}\right)}}}=\frac{{1}}{{-{8}+{5}{x}^{{2}}}}
g
(
x
)
=
−
8
+
5
x
2
1
f
(
x
)
=
9
x
\displaystyle {f{{\left({x}\right)}}}=\frac{{{9}}}{{x}}
f
(
x
)
=
x
9
and
g
(
x
)
=
−
8
+
5
x
2
\displaystyle {g{{\left({x}\right)}}}=-{8}+{5}{x}^{{2}}
g
(
x
)
=
−
8
+
5
x
2
f
(
x
)
=
−
8
+
5
x
2
\displaystyle {f{{\left({x}\right)}}}=-{8}+{5}{x}^{{2}}
f
(
x
)
=
−
8
+
5
x
2
and
g
(
x
)
=
9
x
\displaystyle {g{{\left({x}\right)}}}=\frac{{{9}}}{{{x}}}
g
(
x
)
=
x
9
Question Help:
Video
Submit
Try a similar question
License
[more..]