The transformation of a function f(x)\displaystyle {f{{\left({x}\right)}}} into a function g(x)\displaystyle {g{{\left({x}\right)}}} is given by g(x)=Af(Bx+H)+K\displaystyle {g{{\left({x}\right)}}}={A}{f{{\left({B}{x}+{H}\right)}}}+{K}.

where the constants
  • A\displaystyle {A} vertically scales the function. (negative A reflects the function about the x-axis.)
  • B\displaystyle {B} horizontally scales the function. (negative B reflects the function about the y-axis.)
  • H\displaystyle {H} horizontally shifts the function.
  • K\displaystyle {K} vertically shifts the function.
Transform f(x)\displaystyle {f{{\left({x}\right)}}} into g(x)\displaystyle {g{{\left({x}\right)}}} where the transformation is g(x)=f(x)\displaystyle {g{{\left({x}\right)}}}={f{{\left(-{x}\right)}}}

The function f(x)\displaystyle {f{{\left({x}\right)}}} is shown below in red. Graph the transformed function g(x)\displaystyle {g{{\left({x}\right)}}} by first placing a dot at each end point of the new transformed function and then click on the "line segment" button and connect the two blue dots. (Hint: Use pattern-matching to determine the values of the constants A, B, H, and K.)

point 1 point 2 xmin xmax xgmin xgmax
(0, 0), (1, 2) -1 0 0 1
Clear All Draw: DotLine Segment