Simplify the following into a single logarithm:
5
log
(
2
)
+
2
log
(
x
)
\displaystyle {5}{\log{{\left({2}\right)}}}+{2}{\log{{\left({x}\right)}}}
5
lo
g
(
2
)
+
2
lo
g
(
x
)
log
(
5
⋅
2
⋅
2
x
)
\displaystyle {\log{{\left({5}\cdot{2}\cdot{2}{x}\right)}}}
lo
g
(
5
⋅
2
⋅
2
x
)
log
(
2
5
x
2
)
\displaystyle {\log{{\left({2}^{{5}}{x}^{{2}}\right)}}}
lo
g
(
2
5
x
2
)
log
(
5
⋅
2
2
x
)
\displaystyle {\log{{\left(\frac{{{5}\cdot{2}}}{{{2}{x}}}\right)}}}
lo
g
(
2
x
5
⋅
2
)
log
(
5
⋅
2
⋅
x
2
)
\displaystyle {\log{{\left({5}\cdot{2}\cdot{x}^{{2}}\right)}}}
lo
g
(
5
⋅
2
⋅
x
2
)
log
(
2
5
x
2
)
\displaystyle {\log{{\left(\frac{{{2}^{{5}}}}{{{x}^{{2}}}}\right)}}}
lo
g
(
x
2
2
5
)
Question Help:
Video
Submit
Try a similar question
License
[more..]