Use the Laws of logarithms to rewrite the expression
log(x16y13z10)\displaystyle {\log{{\left({\frac{{{x}^{{{16}}}{y}^{{{13}}}}}{{{z}^{{{10}}}}}}\right)}}}
in a form with no logarithm of a product, quotient or power.
After rewriting we have
log(x16y13z10)=Alog(x)+Blog(y)+Clog(z)\displaystyle {\log{{\left({\frac{{{x}^{{{16}}}{y}^{{{13}}}}}{{{z}^{{{10}}}}}}\right)}}}={A}{\log{{\left({x}\right)}}}+{B}{\log{{\left({y}\right)}}}+{C}{\log{{\left({z}\right)}}}

with
A=\displaystyle {A}=  
B=\displaystyle {B}=  
and
C=\displaystyle {C}=