Which of the following are equivalent to
log
b
(
4
)
\displaystyle {{\log}_{{b}}{\left({4}\right)}}
lo
g
b
(
4
)
?
log
b
(
40
)
−
log
b
(
10
)
\displaystyle {{\log}_{{b}}{\left({40}\right)}}-{{\log}_{{b}}{\left({10}\right)}}
lo
g
b
(
40
)
−
lo
g
b
(
10
)
log
b
(
1
10
)
+
log
b
(
40
)
\displaystyle {{\log}_{{b}}{\left(\frac{{1}}{{10}}\right)}}+{{\log}_{{b}}{\left({40}\right)}}
lo
g
b
(
10
1
)
+
lo
g
b
(
40
)
−
log
b
(
1
4
)
\displaystyle -{{\log}_{{b}}{\left(\frac{{1}}{{4}}\right)}}
−
lo
g
b
(
4
1
)
1
2
log
b
(
16
)
\displaystyle \frac{{1}}{{2}}{{\log}_{{b}}{\left({16}\right)}}
2
1
lo
g
b
(
16
)
1
3
log
b
(
64
)
\displaystyle \frac{{1}}{{3}}{{\log}_{{b}}{\left({64}\right)}}
3
1
lo
g
b
(
64
)
Question Help:
Video
Submit
Try a similar question
License
[more..]