Given the function P(x)=x(x6)(x+3)\displaystyle {P}{\left({x}\right)}={x}{\left({x}-{6}\right)}{\left({x}+{3}\right)}, find
its y\displaystyle {y}-intercept is  
its x\displaystyle {x}-intercepts are x1=\displaystyle {x}_{{1}}=   , x2=\displaystyle {x}_{{2}}=   and x3=\displaystyle {x}_{{3}}=   with x1x2x3\displaystyle {x}_{{1}}\le{x}_{{2}}\le{x}_{{3}}
When x\displaystyle {x}\to\infty, y\displaystyle {y}\to \displaystyle \infty (Input + or - for the answer)
When x\displaystyle {x}\to-\infty, y\displaystyle {y}\to \displaystyle \infty (Input + or - for the answer)