Given f ( x ) = 1 x − 4 \displaystyle {f{{\left({x}\right)}}}={\frac{{{1}}}{{{x}-{4}}}} f ( x ) = x − 4 1 and g ( x ) = 1 x − 6 \displaystyle {g{{\left({x}\right)}}}={\frac{{{1}}}{{{x}-{6}}}} g ( x ) = x − 6 1 , determine the Domain of f ( g ( x ) ) \displaystyle {f{{\left({g{{\left({x}\right)}}}\right)}}} f ( g ( x ) ) . Write your answer in Interval Notation. Round your answers to two decimal places as needed.
( − ∞ , 6 ) U ( 6 , 6.25 ) U ( 6.25 , ∞ ) \displaystyle {\left(-\infty,{6}\right)}{U}{\left({6},{6.25}\right)}{U}{\left({6.25},\infty\right)} ( − ∞ , 6 ) U ( 6 , 6.25 ) U ( 6.25 , ∞ )
( − ∞ , 4 ) U ( 4 , 6 ) U ( 6 , ∞ ) \displaystyle {\left(-\infty,{4}\right)}{U}{\left({4},{6}\right)}{U}{\left({6},\infty\right)} ( − ∞ , 4 ) U ( 4 , 6 ) U ( 6 , ∞ )
[ 6 , 6.25 ] \displaystyle {\left[{6},{6.25}\right]} [ 6 , 6.25 ]
( 4 , 6 ) U ( 6 , 6.25 ) \displaystyle {\left({4},{6}\right)}{U}{\left({6},{6.25}\right)} ( 4 , 6 ) U ( 6 , 6.25 )
( − ∞ , 0 ) U ( 0 , ∞ ) \displaystyle {\left(-\infty,{0}\right)}{U}{\left({0},\infty\right)} ( − ∞ , 0 ) U ( 0 , ∞ )
( − ∞ , 4 ) U ( 6 , ∞ ) \displaystyle {\left(-\infty,{4}\right)}{U}{\left({6},\infty\right)} ( − ∞ , 4 ) U ( 6 , ∞ )