Given
f
(
x
)
=
x
2
−
9
\displaystyle {f{{\left({x}\right)}}}={x}^{{2}}-{9}
f
(
x
)
=
x
2
−
9
, find and simplify
f
(
x
+
5
)
\displaystyle {f{{\left({x}+{5}\right)}}}
f
(
x
+
5
)
.
f
(
x
+
5
)
=
x
2
−
4
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}-{4}
f
(
x
+
5
)
=
x
2
−
4
f
(
x
+
5
)
=
x
2
+
16
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{16}
f
(
x
+
5
)
=
x
2
+
16
f
(
x
+
5
)
=
x
2
+
10
x
+
16
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}+{16}
f
(
x
+
5
)
=
x
2
+
10
x
+
16
f
(
x
+
5
)
=
x
2
+
10
x
+
10
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}+{10}
f
(
x
+
5
)
=
x
2
+
10
x
+
10
f
(
x
+
5
)
=
x
2
+
10
x
−
16
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}-{16}
f
(
x
+
5
)
=
x
2
+
10
x
−
16
Submit
Try a similar question
License
[more..]