Let
f
(
x
)
=
1
2
x
2
\displaystyle {f{{\left({x}\right)}}}=\frac{{1}}{{2}}{x}^{{2}}
f
(
x
)
=
2
1
x
2
Write a formula for
y
=
f
(
x
+
2
)
+
4
\displaystyle {y}={f{{\left({x}+{2}\right)}}}+{4}
y
=
f
(
x
+
2
)
+
4
:
y
=
1
4
x
2
+
5
\displaystyle {y}=\frac{{1}}{{4}}{x}^{{2}}+{5}
y
=
4
1
x
2
+
5
y
=
1
2
(
x
+
2
)
2
+
4
\displaystyle {y}=\frac{{1}}{{2}}{\left({x}+{2}\right)}^{{2}}+{4}
y
=
2
1
(
x
+
2
)
2
+
4
y
=
1
2
x
2
+
8
\displaystyle {y}=\frac{{1}}{{2}}{x}^{{2}}+{8}
y
=
2
1
x
2
+
8
y
=
1
2
x
2
+
6
\displaystyle {y}=\frac{{1}}{{2}}{x}^{{2}}+{6}
y
=
2
1
x
2
+
6
y
=
(
x
+
1
)
2
+
4
\displaystyle {y}={\left({x}+{1}\right)}^{{2}}+{4}
y
=
(
x
+
1
)
2
+
4
Submit
Try a similar question
License
[more..]