Given
f
(
x
)
=
x
2
−
2
\displaystyle {f{{\left({x}\right)}}}={x}^{{2}}-{2}
f
(
x
)
=
x
2
−
2
, find and simplify
f
(
x
)
+
5
\displaystyle {f{{\left({x}\right)}}}+{5}
f
(
x
)
+
5
.
f
(
x
+
5
)
=
x
2
+
10
x
+
23
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}+{23}
f
(
x
+
5
)
=
x
2
+
10
x
+
23
f
(
x
+
5
)
=
x
2
+
23
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{23}
f
(
x
+
5
)
=
x
2
+
23
f
(
x
+
5
)
=
x
2
+
3
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{3}
f
(
x
+
5
)
=
x
2
+
3
f
(
x
+
5
)
=
x
2
+
10
x
−
23
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}-{23}
f
(
x
+
5
)
=
x
2
+
10
x
−
23
f
(
x
+
5
)
=
x
2
+
10
x
+
10
\displaystyle {f{{\left({x}+{5}\right)}}}={x}^{{2}}+{10}{x}+{10}
f
(
x
+
5
)
=
x
2
+
10
x
+
10
Submit
Try a similar question
License
[more..]