Let
f
(
x
)
=
2
x
\displaystyle {f{{\left({x}\right)}}}={2}\sqrt{{{x}}}
f
(
x
)
=
2
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted down 6 units and left 3 units, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
2
x
−
3
−
6
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{{x}-{3}}}-{6}
g
(
x
)
=
2
x
−
3
−
6
g
(
x
)
=
2
x
+
3
+
6
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{{x}+{3}}}+{6}
g
(
x
)
=
2
x
+
3
+
6
g
(
x
)
=
2
x
+
3
−
6
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{{x}+{3}}}-{6}
g
(
x
)
=
2
x
+
3
−
6
g
(
x
)
=
2
x
−
6
+
3
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{{x}-{6}}}+{3}
g
(
x
)
=
2
x
−
6
+
3
g
(
x
)
=
2
x
−
6
−
3
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{{x}-{6}}}-{3}
g
(
x
)
=
2
x
−
6
−
3
Submit
Try a similar question
License
[more..]