Let
f
(
x
)
=
2
x
\displaystyle {f{{\left({x}\right)}}}={2}^{{x}}
f
(
x
)
=
2
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted down 4 units and left 3 units, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
2
x
+
3
−
4
\displaystyle {g{{\left({x}\right)}}}={2}^{{{x}+{3}}}-{4}
g
(
x
)
=
2
x
+
3
−
4
g
(
x
)
=
2
x
−
3
−
4
\displaystyle {g{{\left({x}\right)}}}={2}^{{{x}-{3}}}-{4}
g
(
x
)
=
2
x
−
3
−
4
g
(
x
)
=
2
x
−
4
−
3
\displaystyle {g{{\left({x}\right)}}}={2}^{{{x}-{4}}}-{3}
g
(
x
)
=
2
x
−
4
−
3
g
(
x
)
=
2
x
+
3
+
4
\displaystyle {g{{\left({x}\right)}}}={2}^{{{x}+{3}}}+{4}
g
(
x
)
=
2
x
+
3
+
4
g
(
x
)
=
2
x
−
4
+
3
\displaystyle {g{{\left({x}\right)}}}={2}^{{{x}-{4}}}+{3}
g
(
x
)
=
2
x
−
4
+
3
Submit
Try a similar question
License
[more..]