Let
f
(
x
)
=
3
x
2
\displaystyle {f{{\left({x}\right)}}}={3}{x}^{{2}}
f
(
x
)
=
3
x
2
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted up 5 units and left 4 units, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
3
(
x
−
4
)
2
+
5
\displaystyle {g{{\left({x}\right)}}}={3}{\left({x}-{4}\right)}^{{2}}+{5}
g
(
x
)
=
3
(
x
−
4
)
2
+
5
g
(
x
)
=
3
(
x
+
4
)
2
+
5
\displaystyle {g{{\left({x}\right)}}}={3}{\left({x}+{4}\right)}^{{2}}+{5}
g
(
x
)
=
3
(
x
+
4
)
2
+
5
g
(
x
)
=
3
(
x
+
4
)
2
−
5
\displaystyle {g{{\left({x}\right)}}}={3}{\left({x}+{4}\right)}^{{2}}-{5}
g
(
x
)
=
3
(
x
+
4
)
2
−
5
g
(
x
)
=
3
(
x
+
5
)
2
+
4
\displaystyle {g{{\left({x}\right)}}}={3}{\left({x}+{5}\right)}^{{2}}+{4}
g
(
x
)
=
3
(
x
+
5
)
2
+
4
g
(
x
)
=
3
(
x
+
5
)
2
−
4
\displaystyle {g{{\left({x}\right)}}}={3}{\left({x}+{5}\right)}^{{2}}-{4}
g
(
x
)
=
3
(
x
+
5
)
2
−
4
Submit
Try a similar question
License
[more..]