Let
f
(
x
)
=
2
x
\displaystyle {f{{\left({x}\right)}}}={2}\sqrt{{{x}}}
f
(
x
)
=
2
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted down 4 units and reflected across the y-axis, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
2
−
x
−
4
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{-{x}}}-{4}
g
(
x
)
=
2
−
x
−
4
g
(
x
)
=
−
2
x
−
4
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}}}-{4}
g
(
x
)
=
−
2
x
−
4
g
(
x
)
=
2
−
x
−
4
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{-{x}-{4}}}
g
(
x
)
=
2
−
x
−
4
g
(
x
)
=
−
2
x
−
4
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}-{4}}}
g
(
x
)
=
−
2
x
−
4
g
(
x
)
=
−
(
2
x
−
4
)
\displaystyle {g{{\left({x}\right)}}}=-{\left({2}\sqrt{{{x}-{4}}}\right)}
g
(
x
)
=
−
(
2
x
−
4
)
Submit
Try a similar question
License
[more..]