Let
f
(
x
)
=
3
x
\displaystyle {f{{\left({x}\right)}}}={3}^{{x}}
f
(
x
)
=
3
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted right 5 units and reflected across the x-axis, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
3
−
x
−
5
\displaystyle {g{{\left({x}\right)}}}={3}^{{-{x}-{5}}}
g
(
x
)
=
3
−
x
−
5
g
(
x
)
=
−
3
x
−
5
\displaystyle {g{{\left({x}\right)}}}=-{3}^{{x}}-{5}
g
(
x
)
=
−
3
x
−
5
g
(
x
)
=
−
3
x
−
5
\displaystyle {g{{\left({x}\right)}}}=-{3}^{{{x}-{5}}}
g
(
x
)
=
−
3
x
−
5
g
(
x
)
=
3
−
x
−
5
\displaystyle {g{{\left({x}\right)}}}={3}^{{-{x}}}-{5}
g
(
x
)
=
3
−
x
−
5
g
(
x
)
=
−
3
x
+
5
\displaystyle {g{{\left({x}\right)}}}=-{3}^{{x}}+{5}
g
(
x
)
=
−
3
x
+
5
Submit
Try a similar question
License
[more..]