Let
f
(
x
)
=
2
x
\displaystyle {f{{\left({x}\right)}}}={2}^{{x}}
f
(
x
)
=
2
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted up 6 units and reflected across the y-axis, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
−
2
x
−
6
\displaystyle {g{{\left({x}\right)}}}=-{2}^{{x}}-{6}
g
(
x
)
=
−
2
x
−
6
g
(
x
)
=
−
2
x
+
6
\displaystyle {g{{\left({x}\right)}}}=-{2}^{{x}}+{6}
g
(
x
)
=
−
2
x
+
6
g
(
x
)
=
2
−
x
+
6
\displaystyle {g{{\left({x}\right)}}}={2}^{{-{x}+{6}}}
g
(
x
)
=
2
−
x
+
6
g
(
x
)
=
2
−
x
+
6
\displaystyle {g{{\left({x}\right)}}}={2}^{{-{x}}}+{6}
g
(
x
)
=
2
−
x
+
6
g
(
x
)
=
−
2
x
+
6
\displaystyle {g{{\left({x}\right)}}}=-{2}^{{{x}+{6}}}
g
(
x
)
=
−
2
x
+
6
Submit
Try a similar question
License
[more..]