Let
f
(
x
)
=
2
x
\displaystyle {f{{\left({x}\right)}}}={2}\sqrt{{{x}}}
f
(
x
)
=
2
x
If
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
is the graph of
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
shifted right 6 units and reflected across the x-axis, write a formula for
g
(
x
)
\displaystyle {g{{\left({x}\right)}}}
g
(
x
)
g
(
x
)
=
2
−
x
−
6
\displaystyle {g{{\left({x}\right)}}}={2}\sqrt{{-{x}-{6}}}
g
(
x
)
=
2
−
x
−
6
g
(
x
)
=
−
2
x
+
6
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}}}+{6}
g
(
x
)
=
−
2
x
+
6
g
(
x
)
=
−
2
x
−
6
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}}}-{6}
g
(
x
)
=
−
2
x
−
6
g
(
x
)
=
−
2
x
−
6
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}-{6}}}
g
(
x
)
=
−
2
x
−
6
g
(
x
)
=
−
2
x
+
6
\displaystyle {g{{\left({x}\right)}}}=-{2}\sqrt{{{x}+{6}}}
g
(
x
)
=
−
2
x
+
6
Submit
Try a similar question
License
[more..]