If
f
(
x
)
=
7
x
\displaystyle {f{{\left({x}\right)}}}={7}{x}
f
(
x
)
=
7
x
, find
f
−
1
(
21
)
\displaystyle {{f}^{{-{1}}}{\left({21}\right)}}
f
−
1
(
21
)
and find
(
f
(
21
)
)
−
1
\displaystyle {\left({f{{\left({21}\right)}}}\right)}^{{-{{1}}}}
(
f
(
21
)
)
−
1
.
f
−
1
(
21
)
=
3
\displaystyle {{f}^{{-{{1}}}}{\left({21}\right)}}={3}
f
−
1
(
21
)
=
3
and
(
f
(
21
)
)
−
1
=
1
147
\displaystyle {\left({f{{\left({21}\right)}}}\right)}^{{-{{1}}}}=\frac{{1}}{{147}}
(
f
(
21
)
)
−
1
=
147
1
f
−
1
(
21
)
=
147
\displaystyle {{f}^{{-{{1}}}}{\left({21}\right)}}={147}
f
−
1
(
21
)
=
147
and
(
f
(
21
)
)
−
1
=
1
147
\displaystyle {\left({f{{\left({21}\right)}}}\right)}^{{-{{1}}}}=\frac{{1}}{{147}}
(
f
(
21
)
)
−
1
=
147
1
f
−
1
(
21
)
=
3
\displaystyle {{f}^{{-{{1}}}}{\left({21}\right)}}={3}
f
−
1
(
21
)
=
3
and
(
f
(
21
)
)
−
1
\displaystyle {\left({f{{\left({21}\right)}}}\right)}^{{-{{1}}}}
(
f
(
21
)
)
−
1
is invalid
f
−
1
(
21
)
=
3
\displaystyle {{f}^{{-{{1}}}}{\left({21}\right)}}={3}
f
−
1
(
21
)
=
3
and
(
f
(
21
)
)
−
1
=
1
3
\displaystyle {\left({f{{\left({21}\right)}}}\right)}^{{-{{1}}}}=\frac{{1}}{{3}}
(
f
(
21
)
)
−
1
=
3
1
3
\displaystyle {3}
3
and
1
147
\displaystyle \frac{{1}}{{147}}
147
1
Question Help:
Video
Submit
Try a similar question
License
[more..]