Let
f
(
x
)
=
(
x
−
3
)
2
\displaystyle {f{{\left({x}\right)}}}={\left({x}-{3}\right)}^{{2}}
f
(
x
)
=
(
x
−
3
)
2
Find the largest domain on which
f
\displaystyle {f}
f
is one-to-one and increasing.
[
3
,
∞
)
\displaystyle {\left[{3},\infty\right)}
[
3
,
∞
)
(
−
∞
,
3
]
\displaystyle {\left(-\infty,{3}\right]}
(
−
∞
,
3
]
[
9
,
∞
)
\displaystyle {\left[{9},\infty\right)}
[
9
,
∞
)
(
−
∞
,
∞
)
\displaystyle {\left(-\infty,\infty\right)}
(
−
∞
,
∞
)
[
−
3
,
3
]
\displaystyle {\left[-{3},{3}\right]}
[
−
3
,
3
]
Question Help:
Video
Submit
Try a similar question
License
[more..]