Let
y
=
4
⋅
(
sin
(
3
⋅
x
+
7
)
)
6
\displaystyle {y}={4}\cdot{\left({\sin{{\left({3}\cdot{x}+{7}\right)}}}\right)}^{{6}}
y
=
4
⋅
(
sin
(
3
⋅
x
+
7
)
)
6
Find
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
d
y
d
x
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=
d
x
d
y
=
Preview
Question 6
Type
sin(x)
for
sin
(
x
)
\displaystyle {\sin{{\left({x}\right)}}}
sin
(
x
)
,
cos(x)
for
cos
(
x
)
\displaystyle {\cos{{\left({x}\right)}}}
cos
(
x
)
,
e^x
for
e
x
\displaystyle {e}^{{x}}
e
x
,and so on.
Also, type
(sin(x))^n
for
sin
n
(
x
)
\displaystyle {{\sin}^{{n}}{\left({x}\right)}}
sin
n
(
x
)
,
(cos(x))^n
for
cos
n
(
x
)
\displaystyle {{\cos}^{{n}}{\left({x}\right)}}
cos
n
(
x
)
,
e^(3x)
for
e
3
x
\displaystyle {e}^{{{3}{x}}}
e
3
x
,and so on.
Submit
Try a similar question
License
[more..]
\displaystyle