Simplify the following powers of i:a) i9=\displaystyle {i}^{{9}}=i9= b) i57=\displaystyle {i}^{{57}}=i57= c) i79=\displaystyle {i}^{{79}}=i79= d) i95=\displaystyle {i}^{{95}}=i95= e) i1333=\displaystyle {i}^{{1333}}=i1333= HINT
i60=(i2)30=(−1)30=1\displaystyle {i}^{{60}}={\left({i}^{{2}}\right)}^{{30}}={\left(-{1}\right)}^{{30}}={1}i60=(i2)30=(−1)30=1
i62=(i2)31=(−1)31=−1\displaystyle {i}^{{62}}={\left({i}^{{2}}\right)}^{{31}}={\left(-{1}\right)}^{{31}}=-{1}i62=(i2)31=(−1)31=−1
Can you see the pattern?
Submit Try a similar question