Use f(x)=5x+3\displaystyle {f{{\left({x}\right)}}}={5}{x}+{3} and g(x)=2x+1\displaystyle {g{{\left({x}\right)}}}={2}{x}+{1} to solve:

 (i)  (f+g)(x)=32\displaystyle {\left({f}+{g}\right)}{\left({x}\right)}={32}     

(ii) (fg)(x)=5\displaystyle {\left({f}-{g}\right)}{\left({x}\right)}={5}       

(iii) (fg)(x)=207\displaystyle {\left({f}{g}\right)}{\left({x}\right)}={207}         

(iv) (fg)(x)=239\displaystyle {\left(\frac{{f}}{{g}}\right)}{\left({x}\right)}=\frac{{23}}{{9}}           

If there are more than one solution please separate them in the answer-box with a comma.