Use f(0)=−6\displaystyle {f{{\left({0}\right)}}}=-{6}f(0)=−6 and f(1)=−2\displaystyle {f{{\left({1}\right)}}}=-{2}f(1)=−2 to compute f(5)\displaystyle {f{{\left({5}\right)}}}f(5) given:
f(p+2)=−4f(p)−3f(p+1)+6\displaystyle {f{{\left({p}+{2}\right)}}}=-{4}{f{{\left({p}\right)}}}-{3}{f{{\left({p}+{1}\right)}}}+{6}f(p+2)=−4f(p)−3f(p+1)+6
f(5)=\displaystyle {f{{\left({5}\right)}}}=f(5)=
Submit Try a similar question