A spring/mass/dashpot system with oscillating forcing function is modeled by the ODE:

x+4x+225x=cos(ωt)\displaystyle {x}{''}+{4}{x}'+{225}{x}={\cos{{\left(\omega{t}\right)}}}

where ω\displaystyle \omega represents the frequency of the forcing term. We will determine what value of ω\displaystyle \omega corresponds to the maximal amplitude for the response oscillation.

Using the real part of the solution to the complexified ODE we have:

xp=Re(ei15t225ω2+4iω)\displaystyle {x}_{{p}}=\text{Re}{\left(\frac{{e}^{{{i}{15}{t}}}}{{{225}-\omega^{{2}}+{4}{i}\omega}}\right)}

This can be expressed in form of a pure oscillation:

Acos(15tϕ)\displaystyle {A}{\cos{{\left({15}{t}-\phi\right)}}}

where A\displaystyle {A} is the amplitude and ϕ\displaystyle \phi is the phase lag for the response oscillation. Now the amplitude is:

A=1(225ω2)2+(4ω)2\displaystyle {A}=\frac{{1}}{\sqrt{{{\left({225}-\omega^{{2}}\right)}^{{2}}+{\left({4}\omega\right)}^{{2}}}}}

This is maximal when the radicand in the denominator is minimal. Using calculus, determine what positive value of ω\displaystyle \omega makes the expression (225ω2)2+(4ω)2\displaystyle {\left({225}-\omega^{{2}}\right)}^{{2}}+{\left({4}\omega\right)}^{{2}} minimal.

ω\displaystyle \omega =