Use the method of reduction of order to find a second solution to

ty(8t4)y+(16t16)y=0,t>0\displaystyle {t}{y}{''}-{\left({8}{t}-{4}\right)}{y}'+{\left({16}{t}-{16}\right)}{y}={0},\quad{t}\gt{0}

Given y1(t)=e4t\displaystyle {y}_{{1}}{\left({t}\right)}={e}^{{{4}{t}}}

y2(t)\displaystyle {y}_{{2}}{\left({t}\right)} =  

Give your answer in simplest form (ie no coefficients)