Find the general solution of this ODE:
d
2
y
d
t
2
+
6
d
y
d
t
+
9
y
=
−
8
e
−
3
t
\displaystyle \frac{{{d}^{{2}}{y}}}{{{\left.{d}{t}\right.}^{{2}}}}+{6}\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{9}{y}=-{8}{e}^{{-{3}{t}}}
d
t
2
d
2
y
+
6
d
t
d
y
+
9
y
=
−
8
e
−
3
t
The solution will be of the form:
y
(
t
)
=
C
y
1
(
t
)
+
D
y
2
(
t
)
+
y
p
(
t
)
\displaystyle {y}{\left({t}\right)}={C}{y}_{{1}}{\left({t}\right)}+{D}{y}_{{2}}{\left({t}\right)}+{y}_{{p}}{\left({t}\right)}
y
(
t
)
=
C
y
1
(
t
)
+
D
y
2
(
t
)
+
y
p
(
t
)
so use
C
\displaystyle {C}
C
and
D
\displaystyle {D}
D
as the arbitrary constants.
y
(
t
)
=
\displaystyle {y}{\left({t}\right)}=
y
(
t
)
=
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question