Compute the Wronskian of the functions
y
1
=
e
x
5
,
y
2
=
x
e
x
5
\displaystyle {y}_{{1}}={e}^{{\frac{{x}}{{5}}}},{y}_{{2}}={x}{e}^{{\frac{{x}}{{5}}}}
y
1
=
e
5
x
,
y
2
=
x
e
5
x
.
W
(
e
x
5
,
x
e
x
5
)
=
\displaystyle {W}{\left({e}^{{\frac{{x}}{{5}}}},{x}{e}^{{\frac{{x}}{{5}}}}\right)}=
W
(
e
5
x
,
x
e
5
x
)
=
Preview
Question 6 Part 1 of 2
Is this set of functions linearly independent on the interval
(
−
∞
,
∞
)
\displaystyle {\left(-\infty,\infty\right)}
(
−
∞
,
∞
)
?
yes
no
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question