Let f\displaystyle {f} and g\displaystyle {g} be functions defined as follows:

 f={(15,52),(16,49),(17,10),(18,6),(19,47)}\displaystyle {f}={\left\lbrace{\left({15},-\frac{{5}}{{2}}\right)},{\left({16},-\frac{{4}}{{9}}\right)},{\left({17},{10}\right)},{\left({18},-{6}\right)},{\left({19},-\frac{{4}}{{7}}\right)}\right\rbrace} 

 g={(15,47),(16,0),(17,1),(18,2),(19,14)}\displaystyle {g}={\left\lbrace{\left({15},-\frac{{4}}{{7}}\right)},{\left({16},{0}\right)},{\left({17},-{1}\right)},{\left({18},{2}\right)},{\left({19},\frac{{1}}{{4}}\right)}\right\rbrace} 

Compute the indicated value. If the value does not exist, enter DNE.

(i) (f+f)(15)=\displaystyle {\left({f}+{f}\right)}{\left({15}\right)}=   

(ii) (fg)(17)=\displaystyle {\left({f}-{g}\right)}{\left({17}\right)}=  

(iii) (ff)(18)=\displaystyle {\left({f}\cdot{f}\right)}{\left({18}\right)}=   

(iv)  (fg)(19)=\displaystyle {\left(\frac{{f}}{{g}}\right)}{\left({19}\right)}=