Given
y
1
=
1
x
−
1
\displaystyle {y}_{{1}}=\frac{{1}}{{{x}-{1}}}
y
1
=
x
−
1
1
and
y
2
=
1
x
+
1
\displaystyle {y}_{{2}}=\frac{{1}}{{{x}+{1}}}
y
2
=
x
+
1
1
satisfy the corresponding homogeneous equation of
(
x
2
−
1
)
y
′
′
+
4
x
y
′
+
2
y
=
1
x
+
1
\displaystyle {\left({x}^{{2}}-{1}\right)}{y}{''}+{4}{x}{y}'+{2}{y}=\frac{{1}}{{{x}+{1}}}
(
x
2
−
1
)
y
′′
+
4
x
y
′
+
2
y
=
x
+
1
1
Use variation of parameters to find a particular solution
y
p
=
u
1
y
1
+
u
2
y
2
\displaystyle {y}_{{p}}={u}_{{1}}{y}_{{1}}+{u}_{{2}}{y}_{{2}}
y
p
=
u
1
y
1
+
u
2
y
2
y
p
\displaystyle {y}_{{p}}
y
p
=
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question