Given y1=1x1\displaystyle {y}_{{1}}=\frac{{1}}{{{x}-{1}}} and y2=1x+1\displaystyle {y}_{{2}}=\frac{{1}}{{{x}+{1}}} satisfy the corresponding homogeneous equation of

(x21)y+4xy+2y=1x+1\displaystyle {\left({x}^{{2}}-{1}\right)}{y}{''}+{4}{x}{y}'+{2}{y}=\frac{{1}}{{{x}+{1}}}

Use variation of parameters to find a particular solution yp=u1y1+u2y2\displaystyle {y}_{{p}}={u}_{{1}}{y}_{{1}}+{u}_{{2}}{y}_{{2}}

yp\displaystyle {y}_{{p}} =