In formally proving that limx→7 (18x+4)=398\displaystyle \lim_{{{x}\to{7}}}\ {\left(\frac{{1}}{{8}}{x}+{4}\right)}=\frac{{39}}{{8}}x→7lim (81x+4)=839, let ϵ>0\displaystyle \epsilon>{0}ϵ>0 be arbitrary. Determine δ\displaystyle \deltaδ as a function of ϵ\displaystyle \epsilonϵ. Note: in this case δ\displaystyle \deltaδ will be a function of ϵ\displaystyle \epsilonϵ. You will need to write the word epsilon for ϵ \displaystyle \ \epsilon\ ϵ in the answerbox δ=\displaystyle \delta=δ= Preview Question 6
Submit Try a similar question