In formally proving that limx→−3 (19x−8)=−253\displaystyle \lim_{{{x}\to-{3}}}\ {\left(\frac{{1}}{{9}}{x}-{8}\right)}=-\frac{{25}}{{3}}x→−3lim (91x−8)=−325, let ϵ>0\displaystyle \epsilon>{0}ϵ>0 be arbitrary. Determine δ\displaystyle \deltaδ as a function of ϵ\displaystyle \epsilonϵ. Note: in this case δ\displaystyle \deltaδ will be a function of ϵ\displaystyle \epsilonϵ. You will need to write the word epsilon for ϵ \displaystyle \ \epsilon\ ϵ in the answerbox δ=\displaystyle \delta=δ= Preview Question 6
Submit Try a similar question