In formally proving that limx7 (18x+4)=398\displaystyle \lim_{{{x}\to{7}}}\ {\left(\frac{{1}}{{8}}{x}+{4}\right)}=\frac{{39}}{{8}}, let ϵ>0\displaystyle \epsilon>{0} be arbitrary. Determine δ\displaystyle \delta as a function of ϵ\displaystyle \epsilon.





Note: in this case δ\displaystyle \delta will be a function of ϵ\displaystyle \epsilon. You will need to write the word epsilon for ϵ \displaystyle \ \epsilon\ in the answerbox





δ=\displaystyle \delta=