Given the objective function:

f=6x+9y\displaystyle {f}={6}{x}+{9}{y}

Draw the boundary to the feasible region corresponding to the constraints

{y+x5y+2x6x0y0\displaystyle {\left\lbrace\begin{array}{c} {y}+{x}\le{5}\\{y}+{2}{x}\le{6}\\{x}\ge{0}\\{y}\ge{0}\end{array}\right.}

If this region is unbounded use the necessary points from the constraints and (11,0),(11,11),(0,11)\displaystyle {\left({11},{0}\right)},{\left({11},{11}\right)},{\left({0},{11}\right)} to show the an unbounded region.

12345678910111234567891011
Clear All Draw: Polygon


Then use the feasibility region above to find the maximum and minimum of the given objective function.

Maximum: (If needed, separate points with a comma. Use DNE if the value does not exist.)

Minimum: (If needed, separate points with a comma. Use DNE if the value does not exist.)