Minimize
g
=
2
x
+
3
y
\displaystyle {g}={2}{x}+{3}{y}
g
=
2
x
+
3
y
Subject to
4
x
+
y
≥
21
\displaystyle {4}{x}+{y}\ge{21}
4
x
+
y
≥
21
3
x
+
y
≥
18
x
+
3
y
≥
14
x
≥
0
y
≥
0
\displaystyle {\left.\begin{array}{ccc} {3}{x}+{y}&\ge&{18}\\{x}+{3}{y}&\ge&{14}\\{x}&\ge&{0}\\{y}&\ge&{0}\end{array}\right.}
3
x
+
y
x
+
3
y
x
y
≥
≥
≥
≥
18
14
0
0
Minimum is
at
Question Help:
Video
Submit
Try a similar question
License
[more..]
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172
Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as an n-tuple of numbers. Example: (2,5.5172)
Enter DNE for Does Not Exist