Use the simplex method to maximize the following:
Maximize
f
=
19
x
1
+
3
x
2
+
20
x
3
\displaystyle {f}={19}{x}_{{1}}+{3}{x}_{{2}}+{20}{x}_{{3}}
f
=
19
x
1
+
3
x
2
+
20
x
3
subject to
2
x
1
+
x
2
+
x
3
≤
40
\displaystyle {2}{x}_{{1}}+{x}_{{2}}+{x}_{{3}}\le{40}
2
x
1
+
x
2
+
x
3
≤
40
x
1
+
2
x
2
≤
60
\displaystyle {x}_{{1}}+{2}{x}_{{2}}\le{60}
x
1
+
2
x
2
≤
60
x
2
+
3
x
3
≤
20
\displaystyle {x}_{{2}}+{3}{x}_{{3}}\le{20}
x
2
+
3
x
3
≤
20
x
1
≥
0
,
x
2
≥
0
,
x
3
≥
0
\displaystyle {x}_{{1}}\ge{0},{x}_{{2}}\ge{0},{x}_{{3}}\ge{0}
x
1
≥
0
,
x
2
≥
0
,
x
3
≥
0
If no solutions exist enter DNE in all answerboxes.
x
1
=
\displaystyle {x}_{{1}}=
x
1
=
x
2
=
\displaystyle {x}_{{2}}=
x
2
=
x
3
=
\displaystyle {x}_{{3}}=
x
3
=
f
=
\displaystyle {f}=
f
=
Submit
Try a similar question
License
[more..]