Given x,y,zQ+\displaystyle {x},{y},{z}\in\mathbb{Q}^{+} (meaning the set of positive rational numbers) and:

 x2+xy+xz=112\displaystyle {x}^{{2}}+{x}{y}+{x}{z}={112} 

 xy+y2+yz=69\displaystyle {x}{y}+{y}^{{2}}+{y}{z}={69} 

 xz+yz+z2=44\displaystyle {x}{z}+{y}{z}+{z}^{{2}}={44} 

Find:

(i)  (x+y+z)2=\displaystyle {\left({x}+{y}+{z}\right)}^{{2}}= 

(ii) (x,y,z)=\displaystyle {\left({x},{y},{z}\right)}=