For the lines defined by the following four sets of symmetric equations
L1:
(
x
)
=
y
+
2
5
=
z
+
4
−
6
\displaystyle {\left({x}\right)}=\frac{{{y}+{2}}}{{5}}=\frac{{{z}+{4}}}{{-{{6}}}}
(
x
)
=
5
y
+
2
=
−
6
z
+
4
L2:
(
x
−
1
)
=
y
−
18
5
=
z
+
10
−
6
\displaystyle {\left({x}-{1}\right)}=\frac{{{y}-{18}}}{{5}}=\frac{{{z}+{10}}}{{-{{6}}}}
(
x
−
1
)
=
5
y
−
18
=
−
6
z
+
10
L3:
x
−
12
4
=
y
−
58
20
=
z
+
76
−
24
\displaystyle \frac{{{x}-{12}}}{{4}}=\frac{{{y}-{58}}}{{20}}=\frac{{{z}+{76}}}{{-{{24}}}}
4
x
−
12
=
20
y
−
58
=
−
24
z
+
76
L4:
x
−
2
2
=
y
−
6
25
=
z
−
7
−
6
\displaystyle \frac{{{x}-{2}}}{{2}}=\frac{{{y}-{6}}}{{25}}=\frac{{{z}-{7}}}{{-{{6}}}}
2
x
−
2
=
25
y
−
6
=
−
6
z
−
7
Which of the lines are
parallel
?
L1
L2
L3
L4
Which of the lines are
identical
?
L1
L2
L3
L4
Submit
Try a similar question
License
[more..]