For the lines defined by the following four sets of symmetric equations

L1: (x)=y+25=z+46\displaystyle {\left({x}\right)}=\frac{{{y}+{2}}}{{5}}=\frac{{{z}+{4}}}{{-{{6}}}}
L2: (x1)=y185=z+106\displaystyle {\left({x}-{1}\right)}=\frac{{{y}-{18}}}{{5}}=\frac{{{z}+{10}}}{{-{{6}}}}
L3: x124=y5820=z+7624\displaystyle \frac{{{x}-{12}}}{{4}}=\frac{{{y}-{58}}}{{20}}=\frac{{{z}+{76}}}{{-{{24}}}}
L4: x22=y625=z76\displaystyle \frac{{{x}-{2}}}{{2}}=\frac{{{y}-{6}}}{{25}}=\frac{{{z}-{7}}}{{-{{6}}}}



Which of the lines are parallel?







Which of the lines are identical?