Expand
log
(
9
b
10
)
\displaystyle {\log{{\left(\frac{{{9}{b}}}{{10}}\right)}}}
lo
g
(
10
9
b
)
as a sum and/or difference of logarithms without exponents.
log
(
9
)
−
log
(
b
)
+
log
(
10
)
\displaystyle {\log{{\left({9}\right)}}}-{\log{{\left({b}\right)}}}+{\log{{\left({10}\right)}}}
lo
g
(
9
)
−
lo
g
(
b
)
+
lo
g
(
10
)
log
(
9
)
−
log
(
b
)
−
log
(
10
)
\displaystyle {\log{{\left({9}\right)}}}-{\log{{\left({b}\right)}}}-{\log{{\left({10}\right)}}}
lo
g
(
9
)
−
lo
g
(
b
)
−
lo
g
(
10
)
log
(
9
)
+
log
(
b
)
−
log
(
10
)
\displaystyle {\log{{\left({9}\right)}}}+{\log{{\left({b}\right)}}}-{\log{{\left({10}\right)}}}
lo
g
(
9
)
+
lo
g
(
b
)
−
lo
g
(
10
)
log
(
9
)
+
log
(
b
)
+
log
(
10
)
\displaystyle {\log{{\left({9}\right)}}}+{\log{{\left({b}\right)}}}+{\log{{\left({10}\right)}}}
lo
g
(
9
)
+
lo
g
(
b
)
+
lo
g
(
10
)
Question Help:
Video
Submit
Try a similar question
License
[more..]