Find the values of a\displaystyle {a}a and b\displaystyle {b}b, given the polynomial function f(x)=ax4+4x3−38x2−64x+b\displaystyle {f{{\left({x}\right)}}}={a}{x}^{{4}}+{4}{x}^{{3}}-{38}{x}^{{2}}-{64}{x}+{b}f(x)=ax4+4x3−38x2−64x+b such that f(x)\displaystyle {f{{\left({x}\right)}}}f(x) passes through the point (−2,72)\displaystyle {\left(-{2},{72}\right)}(−2,72) and has x=−4\displaystyle {x}=-{4}x=−4 as a zero.
a=\displaystyle {a}=a=
b=\displaystyle {b}=b=
Submit Try a similar question