Find the values of a\displaystyle {a}a and b\displaystyle {b}b, given the polynomial function f(x)=ax4−9x3−21x2+81x+b\displaystyle {f{{\left({x}\right)}}}={a}{x}^{{4}}-{9}{x}^{{3}}-{21}{x}^{{2}}+{81}{x}+{b}f(x)=ax4−9x3−21x2+81x+b such that f(x)\displaystyle {f{{\left({x}\right)}}}f(x) passes through the point (−2,−180)\displaystyle {\left(-{2},-{180}\right)}(−2,−180) and has x=1\displaystyle {x}={1}x=1 as a zero.
a=\displaystyle {a}=a=
b=\displaystyle {b}=b=
Submit Try a similar question