For the SSA case to yield two triangles bsinA<a<b\displaystyle {b}{\sin{{A}}}<{a}<{b} must be true. Show that this is the case by calculating bsinA\displaystyle {b}{\sin{{A}}}, rounded to one decimal place, and filling in the blank given measurements, b=63.8\displaystyle {b}={63.8}a=38.8\displaystyle {a}={38.8} , and A=31.2\displaystyle \angle{A}={31.2}^{\circ} :

 <38.8<63.8\displaystyle <{38.8}<{63.8} 

Now use the given measurements to solve for both possible triangles: 

Acute Triangle: B1=\displaystyle \angle{B}_{{1}}= C1=\displaystyle \angle{C}_{{1}}= c1=\displaystyle {c}_{{1}}= 

Obtuse Triangle: B2=\displaystyle \angle{B}_{{2}}= C2=\displaystyle \angle{C}_{{2}}= c2=\displaystyle {c}_{{2}}= 

Please round all solutions to the nearest tenth of a unit, if necessary.